Home > News > PCB News > Some methods of PCB thermal design
Contact Us
TEL: + 86-13428967267

FAX: + 86-4008892163-239121  

          + 86-2028819702-239121

Email: sales@o-leading.com Contact Now
Certifications
New Products
Electronic album

News

Some methods of PCB thermal design

2019-03-23 14:16:56
1 Cooling through the PCB board itself

Currently widely used PCB sheets are copper-clad/epoxy glass cloth substrates or phenolic resin glass cloth substrates, and a small amount of paper-based copper-clad sheets are used. Although these substrates have excellent electrical properties and processing properties, they have poor heat dissipation.

As a heat dissipation path for high-heat-generating components, it is hardly expected to conduct heat from the resin of the PCB itself, but to dissipate heat from the surface of the component to the surrounding air.

However, as electronic products have entered the era of miniaturization, high-density mounting, and high-heat assembly, it is not enough to dissipate heat from the surface of a component with a very small surface area.




Impedance Control company china

At the same time, due to the large number of surface mount components such as QFP and BGA, the heat generated by the components is transferred to the PCB in a large amount.

Therefore, the best way to solve the heat dissipation is to improve the heat dissipation capability of the PCB itself in direct contact with the heat generating components. Conducted out or emitted.


2 high heat-generating device plus heat sink, heat-conducting plate

When there are a few devices in the PCB that generate a large amount of heat (less than 3), a heat sink or a heat pipe can be added to the heat generating device.

When the temperature cannot be lowered, a heat sink with a fan can be used to enhance heat dissipation. effect. When the amount of heat-generating devices is large (more than 3), a large heat-dissipating cover (plate) can be used, which is a dedicated heat sink customized according to the position and height of the heat-generating device on the PCB or a large flat-plate heat sink.

The upper and lower parts of the different components are placed. The heat shield is integrally fastened to the component surface, and is in contact with each component to dissipate heat.

However, due to the poor consistency of components during soldering, the heat dissipation effect is not good. A soft thermal phase change thermal pad is usually added to the component surface to improve heat dissipation.


3 For devices that use free convection air cooling, it is best to arrange the integrated circuits (or other devices) in a vertically long manner or in a horizontally long manner.

4 Use reasonable wiring design to achieve heat dissipation

Since the resin in the sheet has poor thermal conductivity, and the copper foil line and the hole are good conductors of heat, increasing the copper foil residual ratio and increasing the heat conduction hole are the main means of heat dissipation.




HEAVY COPPER BOARD manufacturer china

To evaluate the heat dissipation capability of a PCB, it is necessary to calculate the equivalent thermal conductivity (nine eq) of a composite material composed of various materials having different thermal conductivity coefficients.

5 Devices on the same printed board should be arranged as far as possible according to their heat generation and heat dissipation.

Devices with low heat or poor heat resistance (such as small signal transistors, small scale integrated circuits, electrolytic capacitors, etc.) should be placed in the cooling.

The uppermost flow (in the inlet) of the airflow, devices with high heat or good heat resistance (such as power transistors, large-scale integrated circuits, etc.) are placed at the most downstream of the cooling airflow.

6 In the horizontal direction, the high-power devices are placed as close as possible to the edge of the printed board to shorten the heat transfer path; in the vertical direction, the high-power devices are placed as close as possible to the top of the printed board to reduce the temperature of other devices while these devices are operating. influences.


7 The heat dissipation of the printed circuit board in the equipment mainly depends on the air flow, so the air flow path should be studied during the design, and the device or the printed circuit board should be properly configured. When the air flows, it tends to flow in a place with low resistance.




SMD stencil manufacturer china

Therefore, when configuring the device on the printed circuit board, avoid leaving a large air space in a certain area. The same problem should be noted in the configuration of multiple printed circuit boards in the whole machine.

8 Temperature sensitive devices should be placed in the lowest temperature area (such as the bottom of the device), do not place it directly above the heating device, and multiple devices are preferably staggered in a horizontal plane.


9 Place the device with the highest power consumption and maximum heat generation near the best heat dissipation position.

Do not place a device with a higher heat on the corners and peripheral edges of the printed board unless a heat sink is placed near it. When designing the power resistor, choose a larger device as much as possible, and have enough space for heat dissipation when adjusting the layout of the printed board.

10 RF power amplifier or LED PCB uses a metal base substrate.

11 Avoid the concentration of hot spots on the PCB, distribute the power evenly on the PCB as much as possible, and keep the temperature performance of the PCB surface uniform and consistent.

It is often difficult to achieve a strict uniform distribution during the design process, but it is necessary to avoid areas where the power density is too high, so as to avoid the hot spots affecting the normal operation of the entire circuit.

If necessary, it is necessary to perform thermal performance analysis of printed circuits. For example, the thermal performance index analysis software modules added in some professional PCB design software can help designers optimize circuit design.